Field and Galois Theory 3

1) Let k be a field of characteristic p > 0, $\alpha_i \in \bar{k}(i = 1, 2, \dots, n)$ with $\alpha_i^p \in k$. The set $\{\alpha_1, \dots, \alpha_n\}$ is called **p-independent** over k if $[k(\alpha_1, \dots, \alpha_n) : k] = p^n$. Let K/k be a field extension with $K^p \subseteq k$. A subset $\{\alpha_1, \dots, \alpha_n\} \subseteq K$ of p-independent elements over k is called a **p-basis** if $K = k(\alpha_1, \dots, \alpha_n)$.

Let K/k be a finite purely inseparable extension. Show that the extension $K/k(K^p)$ has a *p*-basis.

- 2) For every $n \in \mathbb{N}$, give an example of a finite field extension of degree $\geq n$ which is neither separable nor purely inseparable.
- 3) Let k be a field of positive characteristic and K a finite extension of k. Prove that if the [K : k] is prime to the characteristic of k, then K/k is separable.
- 4) Show that the inseparable closure of a field K in \bar{K} is the smallest intermediate subfield between K and \bar{K} that is perfect.
- 5) Let k be a field of characteristic p > 0 and K/k a purely inseparable extension. The *p*-exponent of the extension K/k is defined to be

$$\inf\{n \in \mathbb{N} | \alpha^{p^n} \in k, \forall \alpha \in K\} \in \mathbb{N} \cup \{+\infty\}.$$

Show that:

- (a) If K/k is finite, then the *p*-exponent of K over the separable closure of k in K is smaller than or equal to $\log_p [K:k]_i$.
- (b) Give an example of a finite purely inseparable extension such that its p-exponent is strictly smaller than the cardinality of a p-basis¹.

¹We know by problem 1 that all p-bases have the same cardinality.

- (c) Give an example of an infinite purely inseparable extension with finite *p*-exponent.
- (d) Give an example of a purely inseparable extension with infinite p-exponent.
- 6) Let K/k be algebraic and L/k an algebraic extension such that K and L are contained in some field. Show that:
 - (a) if L/k is purely inseparable, then

$$[KL:L]_s = [K:k]_s$$

(b) if K/k is finite and L/k is finite and separable, then

$$[KL:L]_i = [K:k]_i$$

7) Let K be a Galois extension of F and let $a \in K$. Let n = [K : F], r = [F(a) : F], and H = Gal(K/F(a)). Let τ_1, \ldots, τ_r be left coset representatives of H in G. Show that

$$\min(F, a) = \prod_{i=1}^{r} \left(x - \tau_i(a) \right)$$

Conclude that

$$\prod_{\sigma \in \operatorname{Gal}(K/F)} (x - \sigma(a)) = \min(F, a)^{n/r}.$$

- 8) Let K be a finite Galois extension of F with Galois group G. Let L be an intermediate extension, and let H be the corresponding subgroup of G. If N(H) is the normalizer of H in G, let L_0 be the fixed field of N(H). Show that L/L_0 is Galois and that if M is any subfield of L containing F for which L/M is Galois, then M contains L_0 .
- 9) Prove the Normal Basis Theorem: If K is a finite Galois extension of F, then there is an $a \in K$ such that $\{\sigma(a) : \sigma \in \text{Gal}(K/F)\}$ is a basis for K as an F-vector space.