Field and Galois Theory 1

In this homework set, E is a field, F is an extension field of E, and E[X] is the polynomial ring in variable X and coefficients in E.

Let C be a certain class of extension fields $F \subset E$. We shall say that C is **distinguished** if it satisfies the following conditions:

- (i) Let $k \subset F \subset E$ be a tower of fields. The extension $k \subset E$ is in C if and only if $k \subset F$ is in C and $F \subset E$ is in C.
- (ii) If $k \subset E$ is in \mathcal{C} , if F is any extension of k, and E, F are both contained in some field, then $F \subset EF$ is in \mathcal{C} .
- (iii) If $k \subset F$ and $k \subset E$ are in C and F, E are subfields of a common field, then $k \subset FE$ is in C.
 - 1) Prove that the class of finite extensions is distinguished.
 - 2) Prove that algebraically closed fields are infinite (as a set).
 - 3) Find a counterexample to show that the class of normal extensions is NOT distinguished.
 - 4) Assume $f(X) := X^n a \in E[X]$ is irreducible, *m* divides *n* and α is a root of *f* in an algebraic closure of *E*. Prove $[E(\alpha^m) : E] = n/m$. What is $\min(\alpha^m; E)(X)$?
 - 5) Let K, L be two finite extensions of a field k, contained in some field. Show that

$$[KL:k] \le [K:k][L:k].$$

If [K:k] and [L:k] are relatively prime, show that one has an equality sign in the above relation.

- 6) Let $f(x) \in E[X]$ be a polynomial of degree n. Let K be its splitting field. Show that [K : E] divides n!.
- 7) Find the splitting field of $X^{p^8} 1$ over the field $\mathbb{Z}/p\mathbb{Z}$.
- 8) Let α be a real number such that $\alpha^4 = 5$. Show that:
 - (a) $\mathbb{Q}(i\alpha^2)$ is normal over \mathbb{Q} ;
 - (b) $\mathbb{Q}(\alpha + i\alpha)$ is NOT normal over \mathbb{Q} .
- 9) Describe the splitting fields of the following polynomials over \mathbb{Q} , and find the degree of each such splitting field.
 - (a) $X^2 1$
 - (b) $X^3 2$
 - (c) $(X^3 2)(X^2 2)$
 - (d) $X^6 + X^3 + 1$
 - (e) $X^5 7$