AGNT Essentials Fall 2025

Field and Galois Theory

Problems Set 4

Instructor: Mohammad Hadi Hedayatzadeh

In the following problems, K/F is a Galois extension, with Galois group Γ .

Definition. A profinite group is an inverse limit of a projective (inverse) system of finite groups. Let $G = \lim_{\alpha \to \infty} G_{\alpha}$ be a profinite group, with $\{G_{\alpha}\}$ a projective system of finite groups. Then G, being a subgroup of the product $\prod_{\alpha} G_{\alpha}$, inherits the subspace topology, where we endow each finite group G_{α} with the discrete topology and the product with the product topology. This is the natural topology of a profinite group, which makes it a topological group.

- 1) Let G be a topological group. Show that if G is profinite then G is Hausdorff, compact and has a system of open neighborhoods of 1 consisting of normal subgroups. Conversely, show that if G is Hausdorff, compact and has a system of open neighborhoods of 1 consisting of normal subgroups, then the projections induce an isomorphism of topological groups $G \cong \lim_{K \to \infty} G/N_{\alpha}$ where $\{N_{\alpha}\}_{\Lambda}$ is any directed family Ω 0 open normal subgroups of Ω 2 with Ω 3, and therefore, Ω 3 is profinite.
- 2) Show that Γ is profinite by proving the isomorphism of topological groups:

$$\Gamma \cong \lim_{\stackrel{\longleftarrow}{\alpha \in \Lambda}} \operatorname{Gal}(L_{\alpha}/F)$$

¹This means that for every α and β , there exists a γ such that $N_{\gamma} \subseteq N_{\alpha} \cap N_{\beta}$.

²why does such a family exist?

AGNT Essentials Fall 2025

where $\{L_{\alpha}\}_{\Lambda}$ is any directed family³ of finite Galois subextensions L_{α}/F such that $K = \bigcup_{\alpha \in \Lambda} L_{\alpha}$

- 3) Let G be a compact topological group and $H \leq G$ a subgroup. Show that:
 - (a) H is open in G if and only if H is closed in G and $[G:H] < \infty$.
 - (b) If H is open, then the intersection of all conjugates of H in G is an open normal subgroup of G.
 - (c) If G is profinite and H is closed and normal, then G/H is profinite as well.
- 4) Let $H \leq \Gamma$, prove that $\bar{H} = \bigcap_{N \in \mathcal{N}} HN$.
- 5) Let L be a be subextension of K/F, show that the subspace topology of Gal(K/L) induced by the Krull topology of Γ is equivalent to the Krull topology of Gal(K/L).
- 6) Let X be a finite discrete continuous Γ -set, i.e. the action $\Gamma \times X \to X$ is continuous where X has the discrete topology and Γ has the Krull topology. Show that there exists a finite Galois subextension L/F such that the action factors through $\operatorname{Gal}(L/F)$, i.e. $\Gamma \to \operatorname{Sym}(X)$ factors through $\operatorname{Gal}(L/F)$.
- 7) Let \mathbb{Q}^{ab} be the extension of \mathbb{Q} obtained by adjoining all roots of unity and $\mathbb{Q}(\zeta_{p^{\infty}})$ the extension of \mathbb{Q} obtained by adjoining all p^n -th roots of 1 (i.e., $\mathbb{Q}(\zeta_{p^{\infty}}) = \mathbb{Q}(\{\zeta \in \mathbb{Q} \mid \exists n \geq 1, \zeta^{p^n} = 1\})$). Show that:
 - (a) The extension $\mathbb{Q}^{ab}/\mathbb{Q}$ is Abelian and there exists an isomorphism of topological groups

$$\operatorname{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) = (\hat{\mathbb{Z}})^{\times}$$

(b) The extension $\mathbb{Q}(\zeta_{p^{\infty}})/\mathbb{Q}$ is Abelian and there exists an isomorphism of topological groups

$$\operatorname{Gal}(\mathbb{Q}(\zeta_{p^{\infty}})/\mathbb{Q}) = \mathbb{Z}_p^{\times}$$

³This means that for every α and β , there exists a γ such that $L_{\alpha}L_{\beta}\subseteq L_{\gamma}$

AGNT Essentials Fall 2025

(c) There exists a canonical decomposition of topological rings:

$$\hat{\mathbb{Z}} \cong \Pi_p \mathbb{Z}_p$$

(d) The following diagram is commutative:

$$\operatorname{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \xrightarrow{\cong} (\hat{\mathbb{Z}})^{\times}$$

$$r_{p} \downarrow \qquad \qquad \downarrow^{\pi_{p}}$$

$$\operatorname{Gal}(\mathbb{Q}(\zeta_{p^{\infty}})/\mathbb{Q}) \xrightarrow{\cong} \mathbb{Z}_{p}^{\times}$$

where the isomorphisms are given by (a) and (b), the projection π_p is given by the decomposition in (c) and r_p is given by the restriction.